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A DYNAMIC MODEL OF AN AXISYMMETRIC, TRANSVERSELY ISOTROPIC,
FLUID-LOADED, FULLY ELASTIC CYLINDRICAL SHELL

1. INTRODUCTION

Fluid-loaded shells are encountered in numerous natural and man-made applications.
Examples include arteries, inner ear tubes, hydraulic lines, marine pilings, water pipes, and shock
absorbers. Understanding the behavior of these systems is important so that their performance
can be analyzed or, in the case of mechanical systems, the next generation can be better
designed. Extensive modeling of these systems has been done over the years, and a large volume
of research articles exists in the area of cylindrical and spherical shells. From a complexity
standpoint, membrane models of shells are the most simplistic and have been derived and
analyzed most notably by Love.! A bending stiffness term was added to the membrane equations
by Donnell.> Rotary inertia and shear effects were added to the cylindrical shell equations by
Mirsky and Herrmann.* These previous models are based on membrane and flexural wave
theory and are accurate only at low frequencies and low wavenumbers. The fully elastic,
isotropic cylindrical shell was modeled and analyzed by Gazis.>® The work by Gazis was a
significant extension of previous theory as it allowed analytical modeling at all frequencies and
wavenumbers, rather than just a small subset of low-frequency and low-wavenumber analysis.
The fully elastic, transversely isotropic cylindrical shell was modeled by Laverty’ for analysis of
wood cylinders. Fay® added fluid loading to the membrane theories for a solid cylinder.
Additionally, Peloquin’ added fluid loading to various flexural wave theories for hollow

cylinders.

This report develops an analytical model of a transversely isotropic, fluid-loaded, fully
elastic axisymmetric cylinder that is in contact with fluid on both its interior and exterior. The
model begins with the equations of motion of a transversely isotropic body in cylindrical
coordinates. Using the radial and longitudinal equations of motion, two free wavenumbers are
calculated corresponding to two specific waves that are propagating in the medium. A solution
set to the shell displacement field is formulated that contains four unknown wave propagation

coefficients. These coefficients are inserted into the stress boundary conditions at the inner and



outer surfaces of the shell. Also included in these boundary conditions are the pressure loads of
the inner and outer fluid fields and any external loads that may be acting on the system. This
produces four algebraic equations with four unknown wave propagation coefficients. This set of
equations can be solved to obtain an analytical solution to the shell displacements, the pressure
of the inner fluid, and the pressure of the outer fluid. The model is verified by comparing the
results with two previously derived models, and a numerical example is included to illustrate the
behavior of a thick shell under two loading conditions. Additionally, a MATLAB subroutine is
included that contains a vectorized computation that outputs interior shell pressure produced

from external forcing functions.



2. SYSTEM MODEL

The system equations consist of three separate models: the cylindrical shell equations of
motion in the radial and axial direction, the inner acoustic field wave equation of pressure, and
the outer acoustic field wave equation of pressure. Once the general solutions to these equations
of motions and pressure are determined, they are coupled using linear momentum and inserted
into the stress fields at the inner and outer radii of the shell. This produces a four-by-four matrix
that contains the dynamics of the system multiplied by a four-by-one vector that contains the
unknown wave propagation coefficients and is equal to a four-by-one vector containing the
applied external loads. This matrix equation can be solved and the response of the system can be
calculated. This process is described below. A schematic of the system illustrating the

coordinate system is shown in figure 1.
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Figure 1. Fluid-Loaded Shell with Coordinate System



The equation of motion of a fully elastic, isotropic body in cylindrical coordinates'® in the

radial direction is

2 2 2
pa u(x,r,t) _ c”[a u(x,r,t) +lau(x,r,t) B u(x,r,t)j|+c44 Bu(x,r,1)

or? or? r or r’ Ox? 1)
O*w(x,r,1)
+(cy+Cy)—————=,
( 13 44) arax
in the longitudinal direction, the equation is

62w(x, r,t) azu(x,r,t) 1 Ou(x,r,t)
SRR — (013 + cas) +=

ot Orox r Ox

(2)

2 2
o 0 w(x2, r,t) N 1 ow(x,r,1) - il/(xz, r,t)
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In equations (1) and (2), u(x,r,t) is the displacement in the radial direction (m), w(x,r,?) is the
displacement in the longitudinal direction (m), » 1s the coordinate of the radial direction (m), x is
the coordinate of the longitudinal direction (m), 7 is time (s), p is density of the shell (kg m™), and
cij are stiffness constants that contain the material properties (N m'?) and are typically complex
quantities. These constants are determined using the constitutive equations in cylindrical
coordinates between strain and stress written for a solid that is transversely isotropic in the axial

direction with respect to the radial and circumferential directions. These equations are

v
£ o, — - (o 3
rr Er rr Er 66 Ex xx ( )
Urx 1 (o
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Vxr = 3 Txr»
Gyr

and

Yx6 = 0 >

i
er

(7

(8)

where &;; are the normal strains (dimensionless), y;; are the shear strains (dimensionless), o;; are

the normal stresses (N m’), 7; j are the shear stresses (N m?>), E, is Young’s modulus in the radial

direction (N m™ , E. is Young’s modulus in the axial direction (N m™), v,, is Poisson’s ratio in
g

the longitudinal direction with a load being applied in the radial direction (dimensionless), and

Uy, is Poisson’s ratio in the radial direction with a load being applied in the longitudinal
direction (dimensionless). Equations (3) through (8) are inverted so that the stresses are

functions of the strains, which in matrix form is
¢=C¢ ,
where

T
Gz[arr 009 Oxx Tx0 Txr Tr&] )
and

1
8=[5rr €00 Exx Vx0 Vxr 7r9]

Using equation (9) and Betti’s reciprocal law for composite materials, written as

the stiffness constants in equations (1) and (2) can be solved for in terms of engineering

constants. They are
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The solution to equations (1) and (2) is now determined for free wave propagation in a
medium that is bounded 1n the radial direction, unbounded in the axial direction, and harmonic in
time. The argument is made’ that the solution to the transversely isotropic differential equations
has to have the same form as the solution to the isotropic differential equations. Thus, the

solution in the radial direction is written as

u(r,x,t) =U(r)exp(ikx) exp(—iwt) = GB () exp(ikx)exp(—iwt) , (18)
and the solution in the longitudinal direction is written as

w(r, x,t) = W(r)exp(ikx)exp(—iat) = HB,(yr)exp(ikx)exp(-iwrt) , (19)

where G and H are unknown wave propagation coefficients, B; denotes an ordinary Bessel
function of order one, By denotes an ordinary Bessel function of order zero, y 1s the free

propagation wavenumber (rad m™), k is the wavenumber with respect to the x-axis (rad m™), and

iis //=1. Itis noted that the free propagation wavenumbers are typically complex quantities;
thus, the Bessel functions contain complex arguments. To facilitate this type of analysis, the
Bessel functions will all be ordinary Bessel functions of the first and second kind with complex
arguments, rather than switching between normal and modified Bessel functions based on the
sign of the argument. Substituting equations (18) and (19) into equations (1) and (2) yields the

two-by-two system of algebraic equations, written as



po’ —ci iy’ —cak®  —iky(cr3 +caq) {G} ~ {0} 20)
iky(c13 +c44) po’ —caay® —cy3k® [[H] (0

The determinant of the two-by-two matrix in equation (20) must be zero if a solution other than
the trivial solution is going to exist. This yields a quadratic equation with respect to the

propagation wavenumber 7 that is written as

a;/4+b;/2+c=0, (21)
where

a=cpicq4 (22)

b=(ciie33 — cf3 —2c13c49)k” = (cag +¢11)po” (23)
and

c=plo —(c33+c4q)po’k? +ezzepuk® . 24)

The solution to equation (21) is

1/2
|:—bi(b2—4ac)”2]
Na2= .

2a (23)

Only the positive values from equation (25) are needed, as the zero-order and first-order Bessel
functions in equations (18) and (19) are even functions; thus, negative values will not contribute

to a linearly independent solution. The first row of equation (20) yields

_ po’ —c,y ek’
iky,,(c;3 +Cy)

(26)
. §|,2G .



The solution is now written as Bessel functions of the first kind using the wavenumbers y,

and y,. The expressions for the displacement fields are

u(x,r,0) =[GJ,(7,r) + G,J, (y,r)]exp(ikx) exp(-iof) , @
and

w(x,r,t) =[H,J o (7,r) + HyJ o (7,r)]exp(ikx) exp(-i 1)

(28)
=[G\ &I (rir)+ Gy6,1 (7 ,r)]explikx) exp(-iwt) .

Additionally, because the domain of » is from a(> 0) to b(< x), Bessel functions of the second

kind are admissible solutions, and the expressions for the displacement fields using these

functions are

u(x,r,t) =[G,Y,(y,r)+G,Y,(y,r)]exp(ikx) exp(-iwf), (29)
and

wOx,r0) = [H, Yo (7,r) + H, Yo (7,r)|explikx) exp(-io1)
(30)
=[G.& Yo (7,r) + G,&, Y, (7,1 explikx) exp(-i i)

The problem set represented by equations (27) and (28) is linearly independent from the solution
set given by equations (29) and (30), and a complete solution is a linear combination of both

equation sets. This gives the total solution to the shell displacements as

u(x,r ) =[G J,(n,r)+ G, Y, (1) + G3J,(y,r) + G, Y, (7,r)]exp(ikx) exp(-iw?) (31

and

w(x,r,) =[G\ E T, (7, 1) + G,E, Yo (117 + G164 (7,) + G L6, Y, (7,7 )] exp(ikx) exp(—iwf) (32)

where G, G2, Gs, and G4 are unknown wave propagation coefficients. The insertion of
equations (31) and (32) into equations (1) and (2) verifies that they are solutions to the original

differential equations of motion.



The unknown wave propagation coefficients are determined using the four stress-boundary
conditions of the shell. The first boundary condition is a force balance between the pressure in
the interior fluid and the normal radial stress in the shell at the interface where r = a. This

equation is written as

o (x,a,t)=cqy

ou(x,a,t u(x,a,t x,a,t
( )+012 ( )+cl3 aW( ) =_pi(x’a’t)’ (33)
or Ox

where p,(x,a,t) is the pressure of the interior fluid (N m'?) at » = @, which satisfies the wave

equation in cylindrical coordinates; i.e.,

azpi(x’r’t) +lapi(x’r’t) + azpi(x’r’t) __l_azp,-(x,r,t) =

or? r or ox? c,~2 or?

(0% (34)

where c; is the acoustic (or compressional) wavespeed of the interior fluid (ms”). Using the
infinite length of the cylinder in the x-direction and the constraint that the pressure field has to be

finite at r = 0, the temporal harmonic solution to equation (34) is

pi(x,r,t) = B(r)exp(ikx)exp(-i?) = MI,(y,r)exp(ikx)exp(-io?), (35)
where
Y 2 1/2
yi = [c—) -k =D (36)
i

In general, »; can be a complex quantity if the internal fluid acoustic wavespeed is complex; i.e.,
contains a loss term as an imaginary quantity. If the loss factor is zero, then the internal fluid
acoustic wavespeed is purely real, and y; will be either purely real or purely imaginary. To relate
the internal acoustic pressure field to the radial shell displacement field, conservation of

momentum is invoked at the interface. This equation is



o u(x,a,1) _ dpi(x,a,t)
6[2 or ’

(37

i

where p; is the density of the interior fluid (kg m™). Inserting equations (31) and (35) into

equation (37) allows the constant M to be determined and the pressure field to be written as

~w?p; Jo(yir)
i  h@ia)

P =

[G1J1(719) + G2 Y1(710) + G3(y20) + G4 Y (y2a)] . (33)

Inserting equations (31), (32), and (38) into equation (33) yields the first algebraic boundary

value equation, written as

e
(enn '*'ikc|3§|)~]0(7|a)'*'[cI2 S + A JO(}/ia)JJl(}’la) G
7. di(ra)

+| (enyy +ikc,3§1)Y0(}/la)+[ =ik =) JO(}/ia)JYl(}ﬁa) G,
i vi (e | 39)

+| (e, Hike;36,)), (72a)+[ c” i £ 1, (7'a)JJ (7,9) |G,
vi N(ra)

-c —w’p. I, (7, )
+| (e, +iken &)Y, (72a)+( Ll 0(7'“))&,(72@ Gy
Vi J](}’ia)

The second boundary condition is the radial-longitudinal shear stress in the shell at the interface

where r = a is zero, and this equation is written as

(40)

O (x,a,1) = c44(6u()(;;a,t) + 8w(;,ra,t)) =0 .

Inserting equations (31) and (32) into equation (40) yields the second algebraic boundary value

equation, written as

10



[eu(ik~7,6), (@] G,

+[C44 (1k _7151 )Yl (7|a)]G2

(41)
+[C44 (ik - 7252)J| (72a)]G3
+[cy ik -7,8,)Y,(7,0)]G, =0.
The third boundary condition is a force balance between the pressure in the exterior fluid, an
applied radial load, and the normal radial stress in the shell at the interface where » = b. This
equation is written as
ou(x,b,t u(x,b,t ow(x,b,t

O (X,0,0) = ¢py (a )+012 ( )+Cl3 (ax ) Po(x,b,1) = pe(x,1) , (42)
where p,(x,) is an applied external forcing function (N m™) in the radial direction that is
assumed to be at a discrete wavenumber and frequency; thus,

Pe(x,t) = P, exp(ikx) exp(-iawt) , (43)
and p, (x,b,t) is the scattered acoustic pressure of the exterior fluid (N m) at = b, which
satisfies the wave equation in cylindrical coordinates; i.e.,

82p (x,r,t) 10p,(x,r,t) 82p (x,r,t) 1 82p (x,r,1)

0 sl et o\l e Ie] sl R 0 ) =0’ (44)

or? r or ox? cg or?

where ¢, is the acoustic (or compressional) wavespeed of the exterior fluid (ms™'). Using the
infinite length of the cylinder in the x-direction and the constraint that the pressure field has

vanished when r approaches infinity, the temporal harmonic solution to equation (44) is
P, (x,7,1) = P, (r)explikx) exp(-ie) = N H" (7,r) exp(ikx) exp(-ier) , (45)

where Hgl) denotes a zero-order Hankel function of the first kind and

11



2 1/2
@
Yo = (—) ~kH =k kD2 (46)

€o

The external fluid wavenumber ¥, can be a complex quantity if the external fluid acoustic
wavespeed is complex, 1.e., contains a loss term as an imaginary quantity. If the loss factor is
zero, then the external fluid acoustic wavespeed is purely real, and y, will be either purely real or
purely imaginary. To relate the external acoustic pressure field to the radial shell displacement

field, conservation of momentum is invoked at the interface. This equation is

8%u(x,b,t) _ 8py(x,b,1)

47
(4] atz ar ( )
where p, is the density of the exterior fluid (kg m?). Inserting equations (31) and (45) into
equation (47) allows the constant N to be determined and the pressure field to be written as
2 (1)
- (Yor)
Fy(r)= Po Ho 1o [G11(1) + G2 Y (716) + G3J1(2b) + G4 Y1 (y20)] - (48)

Yo (1)(7

0

Inserting equations (31), (32), and (48) into equation (42) yields the third algebraic boundary

value equation, written as

: -c, —o’p, H(y,b)
(Cll}/l+lkcl3§1)‘]0(ylb)+[ = o= },p H(l)( b) Jl(7/1b) Gl

. ~-c, -o'p, H(y,b - ]
+ (Cll}’l+lkcl3§l)Y0(7lb)+( - Le (1)(}/0 )J (D) |G,
i 7, H(,b) ] o

-C % H(l) b
+| (e, 7, +ike, &), (yzb)+[ w_—®p 7, )J (7,b) |G,

v, HY(,b)

}/0 Hfl)(}/ob)

-C -w'p HV(y b))
+|(cL7s +iken &)Y, (y’b)+[ w29 P By (7, )JY.mb)}Gﬁ—
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The fourth boundary condition is the radial-longitudinal shear stress in the shell at the interface
where r = b and is equal to an applied longitudinal load that is assumed to be at a discrete

wavenumber and frequency; thus,

Su(x,b,1)  owlx,b,1)

. 5 )=fe(x,’), (50)

O (x,0,1) = C44[

where f,(x,¢) is an applied external forcing function (N m) in the longitudinal direction that is
assumed to be at a discrete wavenumber and frequency; thus,

f.(x,t) = F, exp(ikx)exp(-iw?) . (51)

Inserting equations (31), (32), and (51) into equation (50) yields the fourth algebraic boundary

value equation, written as

[ca ik —y,8)],(D)]G,

+ew (k- 7,£)Y,(7,0)]1G,

(52)
+[eu ik —7,6,),(7,0)]G,
+[cyu (k= 7,8)Y (7,0)1G, = F, .
Equations (39), (41), (49), and (52) are now written in matrix form as
Ag=f, (53)

where A is a known four-by-four coefficient matrix, g is a four-by-one vector that contains the
four unknown wave propagation coefficients, and f is a four-by-one load vector that represents
the external forces exciting the system. (The entries of the matrix and vectors in equation (53)

are given in appendix A.) The wave propagation coefficients are now found by

g=A"f . (54)

Once the wave propagation coefficients are known, the shell displacements can be calculated
using equations (31) and (32), the exterior pressure field can be calculated using equation (48),

and the interior pressure field can be calculated using equation (38).

13 (14 blank)



3. MODEL VALIDATION

The model is now validated by comparison to previously developed shell theories. First,
the fully elastic thick shell model derived in section 2 is compared to a transversely isotropic thin
shell model. From a previously developed isotropic thin shell model,'" fluid loading is added to

produce a longitudinal equation of motion, written as

*wix,t)  hEy  9%w(x,1) ,_hogE,  oux,n)
ot 2 (1= Uy yy) ax2 a(l-vp0y,)  Ox

ph +fox0) (55)

and a radial equation of motion, written as

2 4 h E
pha u(;c,t) =_Ba u():,t) - hE, u(x,f)— v. E  ow(xt) ,
ot Ox a(l-v.v,) a(l-v,v,) 0x
(56)
+ pi(a’x’t)_ po(a’x’t)_ pe(x’t) >
where B is the flexural stiffness (N m) of the shell and is given by
hE
: x ‘ (57)
12(1 =0,y 0y, )
Making the assumption of harmonic response in space and time, the displacements can be
written as
u(x,t) =U exp(ikx)exp(iwi) , (58)
and
w(x,t) =W exp(ikx) exp(iw?) . (59)
This produces the matrix equation
Bu=p, (60)

where the unknown displacements are contained in the vector u. (The entries of the matrix and
vectors in equation (60) are listed in appendix A.) The unknown displacements are determined

using

15



u=B"lp . (61)

Once the displacements are known, the interior pressure field for this model can be calculated

using

_—0%p; Jo(ir)

P
%) vi  h(yia)

U, (62)
and the exterior pressure filed can be calculated using

—w?p, Hf)‘)(yor)
Yo Hfl)(}’oa)

Fp(r)= (63)
Figure 2 is a plot of the transfer function of internal pressure at » = 0 divided by external
forcing function in the radial direction versus wavenumber. Figure 3 is a plot of the transfer
function of internal pressure at » = 0 divided by external forcing function in the longitudinal
direction versus wavenumber. In both figures, the upper plot is the magnitude of the power
expressed in the decibel scale and the lower plot is the phase angle expressed in degrees. The
solid line is the transversely isotropic thick shell model developed in section 2 and the dots
correspond to the transversely isotropic thin shell model listed as equations (55) through (63).
In this example, the thickness of the shell was small (5.08 x 10™ m) and the frequency was low
(100 Hz), so the assumptions of the thin shell model are valid and the outputs of the two models
should reasonably agree. Figures 2 and 3 were generated with the following parameters: shell
density p= 1200 kg m, radial Poisson’s ratio due to longitudinal load v, = 0.48
(dimensionless), longitudinal Young’s modulus E, = 2 x 10° N m™, radial Young’s modulus
E,=3x10°N m'2, longitudinal Poisson’s ratio due to radial load v,, = 0.072 (dimensionless),
shear modulus G,, = 6.76 x 10 N m'2, inner shell radius a = 0.0759 m, outer shell radius
b =0.0765 m, inner fluid density p; = 800 kg m™, inner fluid compressional wavespeed
c; = 1300 ms™, outer fluid density p, = 1000 kg m™, and outer fluid compressional
wavespeed ¢, = 1500 m s, Based on these values, the computed stiffness constants are
e =3.15x10*°Nm? c;=347x 10’ Nm?, ¢;3= 1.68 x 10° N m?, ¢33 =2.16 x 10° N m*?,
and c44 = 6.76 x 10° N m™. For the model validation problems presented here, the shell has zero

damping; however, most structures have some loss mechanism associated with their behavior.
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Note that in figures 2 and 3, there is broad-based agreement between the thin shell model and the
thick shell model. It is noted that these two transfer functions are of interest, and these specific

outputs will be investigated in the remainder of this report.
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Figure 2. Transfer Function of Internal Pressure Divided by External Radial Excitation:
Transversely Isotropic Thick Shell (— ) and Transversely Isotropic Thin Shell (e )
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Next, the fully elastic thick shell model derived in section 2 is compared to a fully elastic

15,6

isotropic thick shell model. A previously developed thick shell model™ is based on Navier’s

equation of motion in an isotropic solid, written in vector form as

2
RN e, o (64)
ot

where A and g are Lamé constants (N m) of the shell and the vector u represents the
displacement field (m). This equation is solved and coupled to the inner and outer pressure field

and the result is the matrix equation
Cd=f, (65)

where C is a known four-by-four coefficient matrix, d is a four-by-one vector that contains four
unknown wave propagation coefficients, and f is a four-by-one load vector that represents the
external forces exciting the system. (The entries of the matrix and vectors in equation (65) are
given in appendix A.) The wave propagation coefficients are now found by

d=C7'f. (66)

Once the wave propagation coefficients are known, the shell displacements can be calculated

using
u(x,r,t)y=[-D,al,(ar) - D,aY,(ar)— D;ik] (fr) - DjikY (fBr)]exp(ikx)exp(-iwi), (67)
and

w(x,r,1) =[D,ik] (ar)+ D,ikY,(ar)+ D, B1,(Br) + G, BY,(Br)]exp(ikx)exp(-iwf).  (68)

Once the displacements are known, the interior pressure field for this model can be calculated

using

.2
Pl(r)= @ pi JO(}/ir)

[-D,a],(ar) - D,aY,(ar) - D,ik] (Br) - D,ikY,(fr)], (69)
v (@)
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and the exterior pressure filed can be calculated using

w’p, H (7,r)

el 7, H{"(7,9)

(-D,al (ar)-D,aY,(ar)— Dk),(fr)—D,ikY,(fr)] . (70)

Figure 4 is a plot of the transfer function of internal pressure at » = 0 divided by external
forcing function in the radial direction versus wavenumber. Figure S is a plot of the transfer
function of internal pressure at » = 0 divided by external forcing function in the longitudinal
direction versus wavenumber. In both figures, the upper plot i1s the magnitude of the power
expressed in the decibel scale and the lower plot is the phase angle expressed in degrees. The
solid line is the transversely isotropic thick shell model developed in section 2, and the dots
correspond to the isotropic thick shell model listed as equations (64) through (70). In this
example, the transversely isotropic model was run with isotropic material properties, so the
output of the transversely isotropic model should reasonably agree with the output of the
isotropic model. Figures 4 and S were generated with the following parameters: frequency
=800 Hz, shell density p= 1200 kg m™, radial Poisson’s ratio due to longitudinal load vy, =
0.48 (dimensionless), longitudinal Young’s modulus E, = 3 x 10* N m?, radial Young’s modulus
E, =3 x 10° N m? longitudinal Poisson’s ratio due to radial load v,, = 0.48 (dimensionless),
shear modulus G, = 1.01 x 10 N m?, inner shell radius a = 0.0762 m, outer shell radius b =
0.152 m, inner fluid density p; = 800 kg m”, inner fluid compressional wavespeed ¢; = 1300 m
s, outer fluid density p, = 1000 kg m™, and outer fluid compressional wavespeed ¢, = 1500 m
s, Based on these values, the computed stiffness constants are ¢;; = A+ 2u=2.64 x 10°N m>2,
c2=A=243x10°Nm?2 c3=4=243x10° Nm? c33=A4+2u=2.64x 10° N m™ and c4s =
£#=1.01x10° N m? Note that in figures 4 and 5, there is broad-based agreement between the
thin shell model and the thick shell model.
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4. HIGH WAVENUMBER APPROXIMATION

Numerical simulations of this model reveal that at high wavenumbers the A matrix
becomes ill-conditioned and algorithmically singular. To avoid this problem in any analysis, the

outputs of the model, i.e., the transfer functions, are analyzed differently in two distinct

regions—namely, where |k| < 5/a and where |[k| >5/a. In the region where [k| >5/a, the
model outputs are calculated in such a manner that they are continuous from |k| <5/ato

|k| > 5/a and they are proportional to 1/k*. This is written in equation form as

A0 sl
P | ! an
P, 4o i ’
_4 |k| > =
k a
and
F () |k| <§
b (r) = /8 a (72)
'3 B, 5
S e S b
k a
where
4
A =(§j L% I (73)
a /28 k=£
a
and
4
By = (2) L1 (74)
a /O k=2

a

This approximation ensures that the energy falloff past the flexural wave will occur in

wavenumber at a rate that is observed in most shell models.

21 (22 blank)



5. NUMERICAL EXAMPLE

A numerical example is now investigated using the transversely isotropic shell model
derived in section 2. Figure 6 i1s an image of the magnitude of the transfer function of internal
pressure at ¥ = 0 divided by external forcing function in the radial direction versus frequency and
wavenumber. This image is the magnitude of the power expressed in the decibel scale with the
scale’s range shown as a colorbar above the plot. Figure 7 shows constant frequency cuts of
figure 6 at frequencies of 500, 1000, 1500, and 2000 Hz. Figure 8 is an image of the magnitude
of the transfer function of internal pressure at » = 0 divided by external forcing function in the
longitudinal direction versus frequency and wavenumber. This image is also the magnitude of the
power expressed in the decibel scale with the scale’s range shown as a colorbar above the plot.
Figure 9 shows constant frequency cuts of figure 8 at frequencies of 500, 1000, 1500, and
2000 Hz. Figures 6 through 9 were generated with the following parameters: shell density p=
1200 kg m>, radial Poisson’s ratio due to longitudinal load v, = 0.48 (dimensionless),
longitudinal Young’s modulus E, =2 x 10°(1-0.05i) N m?, radial Young’s modulus E, = 3 x
10%(1-0.10i) N m™, longitudinal Poisson’s ratio due to radial load v,, = 0.0722(1-0.0498i)
(dimensionless), shear modulus G,, = 6.76 x 10%(1-0.051) N m”, inner shell radius a = 0.0762 m,
outer shell radius b = 0.1524 m, inner fluid density p; = 800 kg m™, inner fluid compressional
wavespeed ¢; = 1300 m s, outer fluid density p, = 1000 kg m™, and outer fluid compressional
wavespeed ¢, = 1500 m s”'. Based on these values, the computed stiffness constants are ¢;; = 3.15
x 10%(1-0.1031) N m™, ¢12 = 3.46 x 10’(1-0.156i) N m?, ¢13 = 1.68 x 10%(1-0.108i) N m™,

33 =2.16 x 10°(1-0.0543i) N m, and c44 = 6.76 x 10%(1-0.05i) N m™. For this problem, the
two validation models used in section 3 are not capable of modeling this configuration; thus, no
comparison can be made with previously available solutions. The MATLAB code used to

generate this (and the previous) example is included as appendix B.
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6. SUMMARY

A model of a transversely isotropic thick shell with fluid loading on the inner and outer
surfaces has been derived. This model is compared to two previously available models and is
shown to be in agreement for the case where the shell is transversely isotropic and extremely thin
and the case where the shell is isotropic and thick. A numerical example is given where the shell
is transversely isotropic and thick. A calculation to bypass the high wavenumber instability that
i1s typical of this class of problems is included. The MATLAB code used to generate the

numerical examples is also included.
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APPENDIX A
COEFFICIENTS OF MATRICES AND VECTORS

This appendix contains the coefficients of the matrices and vectors from the models
developed in this report.

The entries of the A matrix from equation (53) are

2
) C|y —¢C —wp; Jg(y;a)
ayy = (e1y7y +ike3é Jo(ra) +| 12— il J1(n19) , (A-1)
a ve w9
: cp —cyy | —0°p; Jy(ya)
ayp =(en1yy +ike1361) Yo (r19) + P P Yi(ya) , (A-2)
i N
. clp—cy | —0’p; Jo(yia
aj3 =(cq172 +ike3&aMo(ypa) + =  1,0.2) J1(729) , (A-3)
g iy

ay =(c1r2 +ik013§2)Y0(}’20)+L612 Ly, =0 JO(}/ia)JYl(}’za) ; (A-4)
vi (e

ay) = c44(ik — 7151 (na) , (A-5)

ay =c4a(k =S Y1(19) , (A-6)

ayy =caa(ik —y282)1(29) , (A-7)

ay = ca4(ik —7287)Y1(r24) , (A-8)



()
Clp—¢ - w? (70D
a1 = ern +ikersé o) +| D22 2P0 T U0y
Vo H] " (7,0)

a)po ()(J’ b)
Yo H(y,b)

. C —C
as, = (e +1k013§1)Y0(71b)+[ 12 p

. C
ayy =(c1172 +1ke382) Yo (r2b) +

(1)
. c12 =<1 —w? (7ob
a3 =(c1172 +1k013§2)J0(72b)+[ 12 P po - J 1(720) ,
[ "

agy = ca4 (k=115 (11b)

agy = Caq(ik — 1D (D) ,

agy = c44(k —y262)11(720) ,
and

agy =Ca4(1k —y282)Y1(72b) .
The g vector from equation (53) is

e=[G; G, Gy G4)'

The f vector from equation (53) is

Yi(710) ,

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)



f=[o 0o -p, F]".

The entries of the B matrix from equation (60) are

k*hE,

2
b] | =@ ph + .
(1 - Uerxr)

ikhv  E
b]2 = 1 er r

a(l-v,0,,.)

ikho, E,
b2] =TT s
a(l_Uerxr)
and
(1

bon = —2 oh k4h3Ex + hE, +w2p,- Jo(y,-a)+w2p0 Hy ' (709)
22 - p +121 5 i .

(I1-0,,0y4) a (1-v,,0,,) vi (e 7o H] (7,a)

The u vector from equation (60) is
u=[w U]T.
The p vector from equation (60) is

pz[Fe _Pe]T .

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

A-3



A-4

The entries of the C matrix from equation (65) are

2
o =[_(/1+2ﬂ)a2 —M2]J0(aa)+ 2pa [ -0”p; Jo(zia) Yitaia)
a vi  hi(yia)

2 7 .
c1 =[-(/1+2y)a2—,1k2]Y0(aa)+ MG _ o 22 Pi300;0) Y(aa) ,
a vi  h(yia)

M — 2 . .
c13 = =21k Jo(fa)+ 2k _ ) —@"pi Jo7i) Ji(pa) ,
a vi h(ria)

. 2
Cra = ik Yo fay+| 2K _ip| 207 Joid) ||y gy
a vi  di(yia)

cy1 = 2ipke Jy(aa) ,

¢ ==2igka Y\(aa) ,
cp3 = u(k? = )31 (fa)

o4 = u(k? = B2 Y\ (Sa)

2 n
o = [—(/1+2,u)a2 —MZ]JO(ab)+[2':a +a[—w p, Hy (}’ob)J] J(ab) |

1
Yo H{"(r,b)

Yo HD(y,b)

2 (M
32 =[-(/1+2;1)a2 —M2]Y0(ab)+{2'uTa+a[_w po Mo W"’”ﬂ Y (ab) ,

(A-25)

(A-26)

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)

(A-33)

(A-34)



and

. 2 = 2 H(l) ob
€33 = —21/1kﬂ Jo(ﬂb) +[ I;)Ik +lk[ @ Po ?l)(}, )]] Jl(ﬂb) 5
Yo Hl (700)

. e H(l) ob
C34 = =2ikp Yo(ﬂb)+[2lzlk +ik[ L ?l)(y )J] Yi(pb)
Yo H| (}’ob)

cq) = —21uka Ji(ab) ,

Cqy = —21‘[1](& Yl (ab) 5

cq3 = p(k* = 1Y ()

cag = u(k® = B2 Y, (Bb) .

In equations (A-25) through (A-40), the constants are as follows:

and

2
a=(k§—k2)”2 {(%J _kz}

p=ki-kH'"? {(—“1)2 -kz} :
Cs

(A-35)

(A-36)

(A-37)

(A-38)

(A-39)

(A-40)

(A-41)

(A-42)

A-5



where

and

The relationship between the Lamé constants and the material properties is

I
(1+0)1-20)

and

_E
C2(+v)

H

(A-43)

(A-44)

(A-45)

(A-46)

In equations (A-45) and (A-46), Young’s modulus and Poisson’s ratio can be along any axis

because the material is isotropic.
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APPENDIX B
MATLAB SUBROUTINE OF MODEL

--ElasticShellTF---Elastic Shell Transfer Function

---This program produces a model of the interior pressure
in a fluid filled shell when it is loaded on the exterior
by a normal and longitudinal force. The shell has an
outer fluid and is transversly isotropic. The behavior of
the shell is two-dimensional fully elastic. Only the positve
wavenumber points are calculated because the model is symmetric
in wavenumber.

--Written by Andrew J. Hull on 11/26/08

unction { PiDPo, PiDFo ] = ElasticShellTF
freq, kmax,numpts, a, b, r, Ex, Er,nuxr, ro, roi, ci, roo, co)

---Output Variables
PiDPo Interior Pressure (at r) Divided by Exterior Normal Pressure
PiDFo Interior Pressure (at r) Divided by Exterior Longituidnal Force

]

---Input Variables
freq = Frequency (Hz)
kmax = Maximum wavenumber (rad/m)
numpts = Number of points in wavenumber

a = Inner shell radius (m)
b = Outer shell radius (m)
r = Hydrophone radius (m)

Ex = Modulus in the axial direction (N/m"2)

Er = Modulus in the radial direction (N/m"2)

nuxr = Poisson's ratio of the matrix material (dimensionless)
ro = Density of the shell (kg/m"3)

roi = Density of the inner fluid (kg/m”"3)

ci = Wavespeed of the inner fluid (m/s)

roo = Density of the outer fluid (kg/m”"3)

co = Wavespeed of the outer fluid (m/s)

--Frequency in rad/s
w =2 * pi * freq;

Q

%--Build the wavenumber vector
kvec = linspace ( eps, kmax, numpts );

[

$--kahigh is the wavenumber cutoff where the high wavenumber

Q

% approximation is used in the analysis. (This can be changed)
kahigh = 5.0;

)

%--Determine if the wavenumber vector has to be broken into low
% and high regions
if ( a*kvec(end) > kahigh )

startindexhigh = min ( find ( a*kvec > kahigh ) );

AN O O A AP O O A A\ A OC A AN O° A A° A O° A A° A A IR .~ Hh AA° A A° O° O O° O IO A A% I o

klow = kvec(l:1:startindexhigh-1);
khigh = kvec(startindexhigh:1:end) ;
else
klow = kvec;
end

%

%--Transversely isotropic material constants from physical constants
Gxr = Ex / (2 * (1 + nuxr ) );

nurx = nuxr * ( Er / Ex );

cll = Er * (l-nurx*nuxr) / ( (l+nurx) * (l-nurx-2*nurx*nuxr) );



cl2 = Er * nurx * (l+nuxr) / ( (l+nurx) * (l-nurx-2*nurx*nuxr) };

cl3 = Er * nuxr / (l-nurx-2*nurx*nuxr) ;

c33 = Er * nuxr * (l-nurx) / ( nurx * (l-nurx-2*nurx*nuxr) );

c44 = GxXr;

%--Low wavenumber region ka < kahigh

b2 = cll*c44;

bl = (cl1*c33 - c13%2 - 2*cl13*c44)*klow.”2 - (c44+cll)*ro*w’2;

b0 = ro®2*w™4 - ro*w®2*(c33+c44)*klow.”2 + c33*c44*klow.”4;

gammal = sgrt ( ( -bl + sqgrt ( bl.”2 - 4*b0*b2 ) ) / (2 * b2 ) );

gamma2 = sqgrt ( ( -bl - sqgrt ( bl.%2 - 4*b0*b2 ) ) / (2 * b2 ) );

zetal = ( ro*w”2 - cll*gammal.”2 - c44*klow.”2 ) ./ ( i*klow.*gammal*( cl3 +
c44 ) ),

zeta2 = ( ro*w”2 - cll*gamma2.”2 - c44*klow.”2 ) ./ ( i*klow.*gamma2*( c13 +
c44 ) );

%$--Inner fluid load

gammai = sqrt ( (w/ci)”®2 - klow."2 );

gammai = gammai + ( gammai == 0 ) *eps;

fluidiload = (
besselj (1,gammai*a) );

(-w"2*roi)

/ gammai )

L x

( besselj(0,gammai*a) ./

.* besselj(0,gammal*a)

.* bessely(0,gammal*a)

.* bessel]j (0,gamma2*a)

.* bessely(0,gamma2*a)

)
%$--Srr(a) = inner fluid ad;
Amatll = ( cll * gammal + i * klow * c1l3 .* zetal )
+
( ( c12 - c11 * (1 / a) + fluidilocad | .~*
besselj (1,gammal*a) ;
Amatl2 = ( cll * gammal i * klow * ¢c13 .* zetal )
+
( ( cl2 - c11 * (1 /a) + fluidilocad  .*
bessely(1l,gammal*a) ;
Amatl3 = ( cll * gamma2 i * klow * cl3 .* zeta2 )
+
( ( c12 - c11 * (1 / a) + fluidiload | .*
besselj (1,gamma2*a) ;
Amatl4 = ( cll * gamma2 i * klow * cl13 .* zeta2 )
+
( ( ecl12 - cl1 * (1 / a) + fluidiload L
bessely(1l,gamma2*a) ;
%$--Srz(a) = 0;
Amat2l = c44 * ( i1 * klow - gammal .* zetal ) .* besselj(l,gammal*a);
Amat22 = c44 * ( 1 * klow - gammal .* zetal ) .* bessely(l,gammal*a);
Amat23 = c44 * ( 1 * klow - gamma2 .* zeta2 ) .* besselj(l,gamma2*a);
Amat24 = c44 * (i * klow - gamma2 .* zeta2 ) .* bessely(l,gamma2*a);
$--Outer fluid load
gammao = sqrt ( (w/co)”2 - klow.”2 );
gammaoc = gammaoc + ( gammao == 0 ) *eps;

fluidoload = {
besselh(1,1,gammao*b) );

$--Srr (b) uter fluid ]
Amat3l = ( cll * gammal +
+

( (c12 - c11
besselj (1,gammal*b) ;

(-w*2*roo)

Da

/ gammao )

sl

U *

i * klow * c13

*

(1/b)

Amat32 = ( cl1 * gammal i * klow * c13
+

( ( cl12 - c11 * (1 /b)) -
bessely(1,gammal*b) ;
Amat33 = ( cll * gamma2 i * klow * c13
+
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( besselh(0,1,gammao*b) ./

.* zetal )
fluidoload
.* zetal )
fluidoload

.* zeta2 )

I

.* bessel]j (0,gammal*b)

.* bessely(0,gammal*b)

.* bessel]j (0,gamma2*b)
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( (c12 -c112) * (1 /b)) - fluidoload ) .*
besselj(1,gamma2*b) ;
Amat34 = ( cll * gamma2 + i * klow * cl13 .* zeta2 ) .* bessely(0,gamma2*b)
+
( (c12 - c11 ) * (1 /b ) - fluidoload ) .*
bessely (1,gamma2*b) ;
-srz(b)
Amat4l = c44 * ( i1 * klow - gammal .* zetal ) .* besselj(1l,gammal*b);
Amat42 = c44 * (i * klow - gammal .* zetal ) .* bessely(1l,gammal*b);
Amat43 = c44 * ( 1 * klow - gamma2 .* zeta2 ) .* besselj(1,gamma2*b);
Amat44 = c44 * ( 1 * klow - gamma2 .* zeta2 ) .* bessely(l,gamma2*b) ;
;- -Determinant of Amat
DetA = Amatll.*Amat22.*Amat33.*Amat44 - Amatll.*Amat22.*Amat34.*Amat43
-Amatll.*Amat32.*Amat23.*Amat44 + Amatll.*Amat32.*Amat24.*Amat43
Amatll.*Amat42.*Amat23.*Amat34 - Amatll.*Amat42.*Amat24.*Amat33
-Amat2l.*Amatl2.*Amat33.*Amat44 + Amat2l.*Amatl2.*Amat34.*Amat43
Amat2l.*Amat32.*Amatl3.*Amat44 - Amat2l.*Amat32.*Amatld.*Amat43
-Amat2l.*Amatd42.*Amatl3.*Amat34 + Amat2l.*Amatd42.*Amatl4d.*Amat33l
Amat3l.*Amatl2.*Amat23.*Amat44 - Amat3l.*Amatl2.*Amat24.*Amat43
-Amat31l.*Amat22.*Amatl3.*Amat44 + Amat3l.*Amat22.*Amatl4.*Amat43
Amat3l.*Amat42.*Amatl3.*Amat24 - Amat3l.*Amatd42.*Amatld.*Amat23
-Amat4l.*Amatl2.*Amat23.*Amat34 + Amat4l.*Amatl2.*Amat24.*Amat33
Amat4l.*Amat22.,*Amatl3.*Amat34 - Amat4l.*Amat22.*Amatl4d.*Amat33
-Amat4l.*Amat32.*Amatl3.*Amat24 + Amat4l.*Amat32.*Amatld.*Amat23;
%--Protect against a zero divide
DetA = DetA + ( DetA == 0 )*eps;
3 -Inverse terms of A (Not all terms are needed
invAl3 = ( Amatl2.*Amat23.*Amat44 - Amatl2.*Amat24.*Amatd43 +
-Amat22.*Amatl3.*Amat44 + Amat22.*Amatld.*Amatd43l + ...
Amat42.*Amatl3.*Amat24 - Amat42.*Amatld.*Amat23 ) ./ Detd;
invAl4 = ( -Amatl2.*Amat23.*Amat34 + Amatl2.*Amat24.*Amat33 +
Amat22.*Amatl3.*Amat34 - Amat22.*Amatl4d.*Amat33 + ...
-Amat32.*Amatl13.*Amat24 + Amat32.*Amatld.*Amat23 ) ./ DetA;
invA23 = ( -Amat23.*Amat44.*Amatll + Amat24.*Amat43.*Amatll +
-Amatd4l.*Amatl3.*Amat24 + Amatdl.*Amatld.*Amat23 + ...
Amat2l.*Amatl3, *Amat44 - Amat2l.*Amatl4.*Amat43 ) ./ DetAh;
invA24 = ( Amat23.*Amat34.*Amatll - Amat24.*Amat33.*Amatll +
Amat3l.*Amatl3.*Amat24 - Amat3l.*Amatl4.*Amat23 + ...
-Amat21.*Amatl3.*Amat34 + Amat2l.*Amatl4.*Amat33 ) ./ DetA;
invA33 = ( Amat22.*Amat44.*Amatll - Amat24.*Amatd42.*Amatll +
Amat4l.*Amatl2.*Amat24 - Amat4l.*Amatl4d.*Amat22 + ...
-Amat21.*Amatl2.*Amat44 + Amat2l.*Amatld.*Amatd42 ) ./ Deth;
invA34 = ( -Amat22.*Amat34.*Amatll + Amat24.*Amat32.*Amatll +
-Amat31l.*Amatl2.*Amat24 + Amat3l.*Amatld.*Amat22 + ...
Amat2l.*Amatl2.*Amat34 - Amat2l.*Amatl4d.*Amat32 ) ./ DetA;
invA43 = ( -Amat22.*Amat43.*Amatll + Amat23.*Amat42.*Amatll +
-Amat4l.*Amatl2.*Amat23 + Amat4l.*Amatl3.*Amat22 + ...
Amat2l.*Amatl2.*Amat43 - Amat2l.*Amatl3.*Amat42 ) ./ DetA;
invA44 = ( Amat22.*Amat33.*Amatll - Amat23.*Amat32.*Amatll +
Amat3l.*Amatl2.*Amat23 - Amat3l.*Amatl3.*Amat22 +
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-Amat2l.*Amatl2.*Amat33 + Amat2l.*Amatl3.*Amat32 ) ./ Detd;

%
%$--Shell displacement radial direction at a due to external radial pressure
ShellDispRadDPo = -invAl3.*besselj(1l,gammal*a) - invA33.*besselj(l,gamma2*a) +

-invA23. *bessely(1l,gammal*a) - invA43.*bessely(l,gamma2*a);

Interior fluid pressure at r due to external radial pressure
PiDPo = ( (-w"2*roi) ./ gammai ) .* ShellDispRadDPo .* ( besselj(0,gammai*r)
./ besselj(1l,gammai*a) );

--Shell displacement radial direction at a due to external longituidnal force
ShellDispRadDFo = invAl4.*besselj(l,gammal*a) + invA34.*bessel]j(1l,gammal*a) +

invA24.*bessely(1l,gammal*a) + invA44.*bessely(l,gamma2*a) ;

%

%$--Interior fluid pressure at r due to external longitudinal force
PiDFo = { (-w"2*roi) ./ gammai ) .* ShellDispRadDFo .* ( besselj(0,gammai*r)

./ besselj(l,gammai*a) );

High wavenumber region ka >= kahigh
f ( exist('khigh') == 1)

Azero = PiDPo(end) * (klow(end))®4;

Bzero = PiDFo(end) * (klow(end))“4;

- 0° o o

o

PiDPohigh
PiDFohigh

Azero ./ ( khigh.®4 );
Bzero ./ ( khigh.%4 );

PiDPo( max(size(klow)+1l) : max(size(kvec)) )
PiDFo( max(size(klow)+1l) : max(size(kvec)) )

PiDPohigh;
PiDFohigh;

fo)
Q.

Populate the output vectors with the negative wavenumber response
[ fliplr(PiDPo(2:end)) PiDPo ];
[ fliplr (PiDFo(2:end)) PiDFo ];

o° o o (D o°
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